metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42⋊5Dic3, (C4×C12)⋊3C4, (C6×D4)⋊2C4, (C2×D4)⋊2Dic3, (C2×D4).10D6, C4⋊1D4.3S3, C3⋊2(C42⋊C4), (C22×C6).17D4, C6.25(C23⋊C4), C23.7D6⋊8C2, C23.8(C3⋊D4), (C6×D4).173C22, C2.10(C23.7D6), C22.16(C6.D4), (C2×C12).10(C2×C4), (C3×C4⋊1D4).7C2, (C2×C4).3(C2×Dic3), (C2×C6).103(C22⋊C4), SmallGroup(192,104)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C22 — C2×D4 — C4⋊1D4 |
Generators and relations for C42⋊5Dic3
G = < a,b,c,d | a4=b4=c6=1, d2=c3, ab=ba, cac-1=a-1, dad-1=a-1b, cbc-1=b-1, dbd-1=a2b, dcd-1=c-1 >
Subgroups: 304 in 86 conjugacy classes, 23 normal (17 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, C2×C6, C2×C6, C42, C22⋊C4, C2×D4, C2×D4, C2×Dic3, C2×C12, C2×C12, C3×D4, C22×C6, C22×C6, C23⋊C4, C4⋊1D4, C6.D4, C4×C12, C6×D4, C6×D4, C42⋊C4, C23.7D6, C3×C4⋊1D4, C42⋊5Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, C2×Dic3, C3⋊D4, C23⋊C4, C6.D4, C42⋊C4, C23.7D6, C42⋊5Dic3
Character table of C42⋊5Dic3
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 2 | 4 | 4 | 8 | 2 | 4 | 4 | 4 | 24 | 24 | 24 | 24 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | i | i | -i | -i | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -i | -i | i | i | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | i | -i | -i | i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | i | i | -i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | -2 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | 2 | -2 | -2 | -2 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ14 | 2 | 2 | 2 | -2 | -2 | 2 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ15 | 2 | 2 | 2 | 2 | -2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | -√-3 | √-3 | √-3 | -√-3 | 1 | √-3 | -√-3 | 1 | complex lifted from C3⋊D4 |
ρ16 | 2 | 2 | 2 | 2 | -2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | √-3 | -√-3 | -√-3 | √-3 | 1 | -√-3 | √-3 | 1 | complex lifted from C3⋊D4 |
ρ17 | 2 | 2 | 2 | -2 | 2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | -√-3 | √-3 | -√-3 | √-3 | 1 | -√-3 | √-3 | 1 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 2 | -2 | 2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | √-3 | -√-3 | √-3 | -√-3 | 1 | √-3 | -√-3 | 1 | complex lifted from C3⋊D4 |
ρ19 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | 0 | orthogonal lifted from C42⋊C4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 2 | 2 | 0 | orthogonal lifted from C42⋊C4 |
ρ21 | 4 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2√-3 | -2√-3 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | -1+√-3 | -1-√-3 | 0 | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2√-3 | 2√-3 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | -1-√-3 | -1+√-3 | 0 | complex faithful |
ρ24 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-3 | 0 | 0 | 2√-3 | complex lifted from C23.7D6 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2√-3 | 2√-3 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 1+√-3 | 1-√-3 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2√-3 | -2√-3 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 1-√-3 | 1+√-3 | 0 | complex faithful |
ρ27 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-3 | 0 | 0 | -2√-3 | complex lifted from C23.7D6 |
(1 5)(2 6)(3 4)(7 20 11 23)(8 24 12 21)(9 22 10 19)(13 16)(14 17)(15 18)
(1 17 5 14)(2 15 6 18)(3 13 4 16)(7 23 11 20)(8 21 12 24)(9 19 10 22)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 9)(2 8)(3 7)(4 11)(5 10)(6 12)(13 23 16 20)(14 22 17 19)(15 21 18 24)
G:=sub<Sym(24)| (1,5)(2,6)(3,4)(7,20,11,23)(8,24,12,21)(9,22,10,19)(13,16)(14,17)(15,18), (1,17,5,14)(2,15,6,18)(3,13,4,16)(7,23,11,20)(8,21,12,24)(9,19,10,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,9)(2,8)(3,7)(4,11)(5,10)(6,12)(13,23,16,20)(14,22,17,19)(15,21,18,24)>;
G:=Group( (1,5)(2,6)(3,4)(7,20,11,23)(8,24,12,21)(9,22,10,19)(13,16)(14,17)(15,18), (1,17,5,14)(2,15,6,18)(3,13,4,16)(7,23,11,20)(8,21,12,24)(9,19,10,22), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,9)(2,8)(3,7)(4,11)(5,10)(6,12)(13,23,16,20)(14,22,17,19)(15,21,18,24) );
G=PermutationGroup([[(1,5),(2,6),(3,4),(7,20,11,23),(8,24,12,21),(9,22,10,19),(13,16),(14,17),(15,18)], [(1,17,5,14),(2,15,6,18),(3,13,4,16),(7,23,11,20),(8,21,12,24),(9,19,10,22)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,9),(2,8),(3,7),(4,11),(5,10),(6,12),(13,23,16,20),(14,22,17,19),(15,21,18,24)]])
G:=TransitiveGroup(24,354);
Matrix representation of C42⋊5Dic3 ►in GL4(𝔽7) generated by
2 | 3 | 0 | 1 |
1 | 0 | 1 | 5 |
4 | 4 | 4 | 6 |
0 | 0 | 0 | 6 |
6 | 3 | 3 | 0 |
1 | 5 | 5 | 6 |
3 | 3 | 3 | 1 |
5 | 2 | 1 | 0 |
3 | 0 | 1 | 1 |
3 | 6 | 2 | 2 |
1 | 1 | 1 | 5 |
0 | 0 | 0 | 4 |
1 | 0 | 6 | 3 |
2 | 2 | 3 | 2 |
1 | 6 | 3 | 3 |
3 | 3 | 2 | 1 |
G:=sub<GL(4,GF(7))| [2,1,4,0,3,0,4,0,0,1,4,0,1,5,6,6],[6,1,3,5,3,5,3,2,3,5,3,1,0,6,1,0],[3,3,1,0,0,6,1,0,1,2,1,0,1,2,5,4],[1,2,1,3,0,2,6,3,6,3,3,2,3,2,3,1] >;
C42⋊5Dic3 in GAP, Magma, Sage, TeX
C_4^2\rtimes_5{\rm Dic}_3
% in TeX
G:=Group("C4^2:5Dic3");
// GroupNames label
G:=SmallGroup(192,104);
// by ID
G=gap.SmallGroup(192,104);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,219,1571,570,297,136,1684,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=c^3,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations
Export